ISRAEL 
HIGH-TECH & INVESTMENT REPORT

from the August 2010 issue


New Invention at the Weizmann Institute: Enables Severely Disabled People to Communicate and Steer a Wheelchair by Sniffing

A unique device based on sniffing - inhaling and exhaling through the nose - might enable numerous disabled people to navigate wheelchairs or communicate with their loved ones. Sniffing technology might even be used in the future to create a sort of "third hand," to assist healthy surgeons or pilots.

Developed by Prof. Noam Sobel, electronics engineers Dr. Anton Plotkin and Aharon Weissbrod and research student Lee Sela in the Weizmann Institute's Neurobiology Department, the new system identifies changes in air pressure inside the nostrils and translates these into electrical signals. The device was tested on healthy volunteers as well as quadriplegics, and the results showed that the method is easily mastered. Users were able to navigate a wheelchair around a complex path or play a computer game with nearly the speed and accuracy of a mouse or joystick. Sobel: "The most stirring tests were those we did with locked-in syndrome patients. These are people with unimpaired cognitive function who are completely paralyzed - 'locked into' their bodies. With the new system, they were able to communicate with family members, and even initiate communication with the outside. Some wrote poignant messages to their loved ones, sharing with them, for the first time in a very long time, their thoughts and feelings." Four of those who participated in the experiments are already using the new writing system, and Yeda Research and Development Company, Ltd., - the technology transfer arm of the Weizmann Institute - is investigating the possibilities for developing and distributing the technology.

Sniffing is a precise motor skill that is controlled, in part, by the soft palate - the flexible divider that moves to direct air in or out through the mouth or nose. The soft palate is controlled by several nerves that connect to it directly through the braincase. This close link led Sobel and his scientific team to theorize that the ability to sniff - that is, to control soft palate movement - might be preserved even in the most acute cases of paralysis. Functional magnetic resonance imaging (fMRI) lent support to the idea, showing that a number of brain areas contribute to soft palate control. This imaging revealed a significant overlap between soft palate control and the language areas of the brain, hinting to the scientists that the use of sniffing to communicate might be learned intuitively.



Reprinted from the Israel High-Tech & Investment Report August 2010

Click HERE to request further information.
Click HERE to go BACK.